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Inhomogeneous Poisson process

e In non-parametric estimation the unknown object is a
function.
e We observe a periodic Poisson process with a known period 7

XT={X(t), te[0,T]}, T =nr.

e X(0) =0, has independent increments and there exists a
positive, increasing function A(t) s.t. for all t € [0, T]

P(X(t) = k) = [A(ktl)]ke_/\(t)’ k=01,
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Trajectory of a Poisson process

w0
= 2 4
s -
(8]
@
T
= w0 o
o
T T T T T
0 5 10 15 20
Interval

Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 4 /27



First Order Estimation

DYNSTOCH 2016 &

Models description

e |n the definition

P(X(t) = k) = Me—"(f), k=0,1,---.
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Models description

e |n the definition

P(X(t) = k) = [A(kt|)]ke_/\(t)’ k=01, -

e The function A(-) is called the mean function since
EX(t) = A(t).
e We consider the case were A(+) is absolutely continuous
A(t) = [y A(s)ds.
e The positive function A(-) is called the intensity function and

the periodicity of a Poisson process means the periodicity of
its intensity function

A(t) = Mt + kr), t € [0,7], k € Z,.
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Mean and the Intensity functions

e With the notations

Xj(t) = X(U = D7+ t) = X(( = 1)7), t € [0,7],
Xj={Xj(t), t€ [0, 7]}, j=1,---,n,
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Mean and the Intensity functions

e With the notations

Xj(t) = X(U = D7+ t) = X(( = 1)7), t € [0,7],
Xj={Xj(t), t€ [0, 7]}, j=1,---,n,

e We get an i.i.d. model X" = (Xy, Xo,- -, X,) generated from
a Poisson process.

e Estimation problems of \(t), t € [0, 7] and A(t), t € [0, 7] are
completely different.

e We would like to have Hajek-Le Cam type lower bounds for
function estimation

lim lim sup nEg(@, —0)> > ——.
010 ns oo |9—05| <6 (6 =0) 1(6o)
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Mean function estimation

e We consider the estimation problem of the mean function
{A(t), t € [0, 7]}.
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Mean function estimation

We consider the estimation problem of the mean function
{A(t), t € [0,7]}.

Each measurable function A,(t) = A,(t, X") of observations
is an estimator for A(t).

To assess the quality of an estimator we use the MISE

Enl|/An — A|]> = Ep /OT(/_\,,(t) — A(t))?dt.

The simplest estimator is the empirical mean function

An(t) = %ij(t), t€[0,7].
j=1
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EAllVAR, ~ NIE = [ Ae)a.
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e The following basic equality for the EMF implies two things

EAllVAR, ~ NIE = [ Ae)a.

@ The EMF is consistent with the classical rate of convergence

NG
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The basic equality for the EMF

e The following basic equality for the EMF implies two things

EAllVAR, ~ NIE = [ Ae)a.

@ The EMF is consistent with the classical rate of convergence

NG

@ The asymptotic variance (which is non-asymptotic) of the
EMF is [ A(t)dt.

e Can we have better rate of convergence or smaller asymptotic
variance for an estimator?
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As. efficiency of the EMF

e The EMF is asymptotically efficient among all estimators
An(t),
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As. efficiency of the EMF

 The EMF is asymptotically efficient among all estimators
An(t),
o Kutoyants' result-for all estimators A,(t)

lim lim sup E,\Hﬁ(/_\n—/\)sz/ A*(t)dt,
010 n—400 Ae Vs 0

with Vs = {A: supg<,<, |A(t) — N*(t)| < d}, 6 > 0.
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As. efficiency of the EMF

e The EMF is asymptotically efficient among all estimators
An(t),
o Kutoyants' result-for all estimators A,(t)

lim lim sup E,\Hﬁ(/_\n—/\)sz/ A*(t)dt,
010 n—400 Ae Vs 0

with Vs = {A: supg<,<, |A(t) — N*(t)| < d}, 6 > 0.

e Reformulation

lim sup <E/\||ﬁ(/_\,, - NP - /OT /\(t)dt) > 0.

n——+oo AeF
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. efficiency of the EMF

The EMF is asymptotically efficient among all estimators
An(t),
Kutoyants' result-for all estimators A,(t)

lim lim sup E,\Hﬁ(/_\n—/\)sz/ A*(t)dt,
010 n—400 Ae Vs 0

with Vs = {A: supg<,<, |A(t) — N*(t)| < d}, 6 > 0.

Reformulation

lim sup <E/\||ﬁ(/_\,, - NP - /OT /\(t)dt) > 0.

n——+oo AeF

F C L,[0, 7] is a sufficiently “rich”, bounded set.
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. efficiency of the EMF

e The EMF is asymptotically efficient among all estimators
An(t),
Kutoyants' result-for all estimators A,(t)

lim lim sup E,\Hﬁ(/_\n—/\)sz/ A*(t)dt,
010 n—400 Ae Vs 0

with Vs = {A: supg<,<, |A(t) — N*(t)| < d}, 6 > 0.

Reformulation

lim sup <E/\||ﬁ(/_\,, - NP - /OT /\(t)dt) > 0.

n——+oo AeF

F C L,[0, 7] is a sufficiently “rich”, bounded set.

Can we have other asymptotically efficient estimators?
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Efficient estimators

e Existence of other as. efficient estimators depends on the
regularity conditions imposed on unknown A(+).
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Efficient estimators

e Existence of other as. efficient estimators depends on the
regularity conditions imposed on unknown A(+).

e In other words, it depends on the choice of the set F in
lim sup <E,\||ﬁ(7\n — N2 —/ /\(t)dt) > 0.
n—+o00 NeF 0

e Demanding existence of derivatives of higher order of the
unknown function, we can enlarge the class of as. efficient
estimators.
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First results

e At first, consider the L, ball with a center A*

B(R) = {A: [|A = A*|]2 < R, A*(7) = N(7)}.
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First results
e At first, consider the L, ball with a center A*
B(R) = {A: [|A = A*|]2 < R, A*(7) = N(7)}.
e Consider a kernel-type estimator
An(t) = /0 Kn(s — t)(An(s) — Au(s))ds + Au(t).
o Kernels satisfy

T T

Kn(u) >0, u e [—E, 5} , /; Ko(u)du=1,neN,
—32

and we continue them 7 periodically on the whole real line R

Ko(u) = Kn(—u), Kn(u) = Kn(u + k7), u € [—% g} ke Z.
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Kernel-type estimator

e Consider the trigonometric basis in L[0, 7]

P1(t) = \/E, P2u(t) = \/ECOS ?t, P2141(t) = \/gsm ?t'
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Kernel-type estimator

e Consider the trigonometric basis in L[0, 7]

P1(t) = \/E, P2u(t) = \/ECOS ?t, P2141(t) = \ES"‘ ?t'

e Coefficients of the kernel-type estimator w.r.t. this basis
A A A T A * *
Atn = Niny Nojn = \/ngi,n(/\zl,n —N\y) + A3,
X T A * *
Noty1,n = \[ZK2I,n(/\2/+1,n —N3i1) + N1 TEN,

where /A\/J, are the Fourier coefficients of the EMF.
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Efficiency over a ball

e A kernel-type estimator
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e A kernel-type estimator

An(t) = /0 Kn(s — t)(An(s) — Au(s))ds + A.(t).

e with a kernel satisfying the condition

p-
\/ng/,n -1

2

nsup — 0,

>1
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Efficiency over a ball

e A kernel-type estimator

An(t) = /0 Kn(s — t)(An(s) — Au(s))ds + A.(t).

e with a kernel satisfying the condition

p-
\/ng/,n -1

e is asymptotically efficient over a ball

2

nsup — 0,

>1

im_ sup (Enllva(h, - W) - [ Awae) ~o

n—=+00 AcB(R)

Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 13 /27



Second Order Estimation DYNSTOCH 2016 %

Efficiency over a compact set

e Now we impose additional conditions of regularity on the
unknown mean function
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Efficiency over a compact set

e Now we impose additional conditions of regularity on the
unknown mean function

e it belongs to X(R)
Z(R) = {A: A= N2 < R, A() = A(7)}.

o A kernel-type estimator with the kernel satisfying

2
\/?KQ/V,-, - 1
nsup | —=—_———| —0,
>1 -
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Efficiency over a compact set

e Now we impose additional conditions of regularity on the
unknown mean function

e it belongs to X(R)
Z(R) = {A: A= N2 < R, A() = A(7)}.

o A kernel-type estimator with the kernel satisfying

\/§K2l,n -1

2nl
T

2

nsup
>1

— 0,

e is asymptotically efficient over £(R)

im_sup (EallVal, — N~ [ Aoac) o

=400 Acs(R)
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Example of another as. effective estimator

e Consider a kernel

K(u)>0,ue [—%,%} , /2 K(u)du =1,

_T

N

T

K(u) = K(—u), K(u)=K(u+kr), uc [—% 5} ke Z.
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Example of another as. effective estimator

e Consider a kernel

K(u)>0,ue [—%,%} , /2 K(u)du =1,

_T

N

K(u) = K(—u), K(u)=K(u+kr), uc [—% ﬂ ke Z.

e A sequence 0 < h, <1best. h’n— 0, n — +o0.
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Example of another as. effective estimator

e Consider a kernel

K(u)>0,ue [—%,%} , /2 K(u)du =1,

T

N

K(u) = K(—u), K(u)=K(u+kr), uc [—% ﬂ ke Z.

e A sequence 0 < h, <1best. h’n— 0, n — +o0.
e Then, the kernels

Kot = ok () 1 {1 < )

satisfy the previous condition and hence
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Example of another as. effective estimator

e Consider a kernel

K(u)>0,ue [—%,%} , /2 K(u)du =1,

_T

N

-
2
A sequence 0 < h, <1 bes.t. h2n — 0, n — +o0.
e Then, the kernels

Kot = ok () 1 {1 < )

satisfy the previous condition and hence
e the corresponding kernel-type estimator

An(t) = /0 Kn(s — t)(An(s) — Au(s))ds + Au(t).

is as. efficient over X(R).

K(u) = K(—u), K(u)=K(u+kr), uc [—% } ke Z.
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n——+oo AeF
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Second order efficiency

e How to compare as. efficient estimators?
e The first step would be to find the rate of convergence in
_ T
lim  sup (EAM(A” -mie- [ A(r)dt) >0,
n—+oo AeF 0
e that is, the sequence v, — +00 s.t.
_ T
lim sup vy, <E/\||ﬁ(/\,, — N2 —/ /\(t)dt) > C,
n—+oo AeF 0
e Then, to construct an estimator which attains this bound.
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Second order efficiency

How to compare as. efficient estimators?

The first step would be to find the rate of convergence in

lim  sup (EAHﬁ(ﬂn—A)HZ— / TA(r)dt) >0,

n——+oo AeF

that is, the sequence v, — +o0 s.t.

i sup 3, (EnllV(R, - WIP - [ Ateyae) = c.

n—+oo AeF

Then, to construct an estimator which attains this bound.

Calculate the constant C.
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Related works

e Second order estimation was introduced by
[Golubev G.K. and Levit B.Ya., 1996] in the distribution
function estimation problem.
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Related works

e Second order estimation was introduced by
[Golubev G.K. and Levit B.Ya., 1996] in the distribution
function estimation problem.

e For other models second order efficiency was proved by
[Dalalyan A.S. and Kutoyants Yu.A., 2004],
[Golubev G.K. and Hardle W., 2000].

e Asymptotic efficiency in non-parametric estimation problems
was done for the first time in [Pinsker M.S., 1980],

e where the analogue of the inverse of the Fisher information in

non-parametric estimation problem was calculated (Pinsker’s
constant).
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Main theorems

e Introduce
FP(R,S) = {/\(-) : /T[)\(m_l)(t)]2dt < R, N(0) =0, A(7) = 5}
0

where R >0, S > 0, m > 1, are given constants.
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FP(R,S) = {/\(-) : /T[)\(m_l)(t)]2dt < R, N(0) =0, A(7) = 5}
0

where R >0, S > 0, m > 1, are given constants.
e For all estimators Ap(t) of the mean function A(t), following
lower bound holds

lim  sup n-T <E,\|]ﬁ(l_\,,—/\)H2—/ /\(t)dt> > -,
0

n—+00 Ae Fin(R,S)
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Main theorems

e Introduce
FP(R,S) = {/\(-) : /T[)\(m_l)(t)]2dt < R, N(0) =0, A(7) = 5}
0

where R >0, S > 0, m > 1, are given constants.
e For all estimators Ap(t) of the mean function A(t), following
lower bound holds

lim  sup n-T <E,\|]ﬁ(l_\,,—/\)H2—/ /\(t)dt> > -,
0

n—+00 Ae Fin(R,S)

e where

2m

1= (8, 5) = @m = DA e i)

plays the role of the Pinsker's constant.
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Second order as. efficient estimator

e Consider

Np
Ni(t) = Aondho(t) + Z Kinh\rni(t),

I=1

where {¢, 7;08 is the trigonometric cosine basis, /A\,,,, are the
Fourier coefficients of the EMF w.r.t. this basis and

7l

mo. « | ST m 2m=1
) T aRT @m—1)(m—1) :

N, = I(am—% ~ Cn2n-1, x; = max(x,0), x € R.
T

-
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Second order as. efficient estimator

e Consider
Np
N(t) = Ro.ndo(t) + Y Kinhradi(t),
I=1
where {¢,  is the trigonometric cosine basis, /\, n are the

Fourier coefﬁuents of the EMF w.r.t. this basis and

Kin=(1 ; R A >
Ln = ) T aRT @m—1)(m—1) ’
N, = I(am—% ~ Cnﬁ, x4 = max(x,0), x € R.

T

wl|"

T

e The estimator A(t) attains the lower bound described above,
that is,

im_sup o (EnVaR, - W~ [ A@ac) = -

=40 Ac Fn(R,S)
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Sketch of the proof

e Proof consists of several steps:
[

" maximal mean
maximal mean

Ellispoid

)

[ —
Ellispoid :

heavy functions of
maximizing

=:> shrunken
prior

Ellispoid Ellispoid Y,
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First step

=== { maximal mean
error
Ellispoid

Ellispoid
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First step

=== { maximal mean
error
Ellispoid

Ellispoid

e Reduce the minimax problem to a Bayes risk maximization
problem

sup  (EllAn— A2 = EnllAs — AJI?) >
NeFF(R.S)

sup / (EnllAn = A2 = EnllA, — AJI?) 4Q.
QeP JFP(R,S)
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Second step

maximal mean
maximal mean
error

Ellispoid
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Second step

maximal mean
maximal mean
error

Ellispoid

e In the maximization problem replace the set of probabilities
P(F) concentrated on F¥°(R, S)

sup /( (EnllAn = AII? = ExllA, — AII?) dQ,
QeP(F) JFRI(R,S)
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Second step

maximal mean
maximal mean
error

Ellispoid

e In the maximization problem replace the set of probabilities
P(F) concentrated on F¥°(R, S)

sup /( (EnllAn = AII? = ExllA, — AII?) dQ,
QeP(F) JFF(R.S)

e by the set of probabilities E(F) concentrated on .F,(,,per)(R, S)
in mean.
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Third step

maximal mean

heavy functions of
maxiizing

Ellispoid
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Third step

maximal mean

heavy functions of
maxiizing

Ellispoid

e Replace the ellipsoid by the least favorable parametric family
(heavy functions)

sup / (EQH/’\,,—/\Q\F—EQH/“\,,—/\Q\F) Q.
Ao FPe)(R,5) Y ©
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Fourth step

heavy functions of
maximizing

=">  shrunen
prior

Ellispoid Ellispoid  *
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Fourth step

heavy functions of
maximizing

-~ - //
N h
\
$ shrunken
prior
Naee s
Ellispoid Ellispoid  *

e Shrink the heavy functions and the least favorable prior
distribution to fit the ellipsoid

Q{0: Ny & FPU(R,S)} = o(n2).
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Further work

e What can be done or what had to be done?
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Further work

e What can be done or what had to be done?
e The condition A(7) = S in the definition of the set

.F,(,,per)(R, S) have to be replaced by A(7) < S. The last one
cannot be thrown out since with a notation
mi(t) = Xj(t) — A(t) we get

1 n
An(t) = A(t) + - Zm(t), data=signal+ “noise”
j=1

and the variance of the noise is 1A(t). (Simultaneous
estimation of the function and its variance).
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Further work

e What can be done or what had to be done?
e The condition A(7) = S in the definition of the set

.F,(,,per)(R, S) have to be replaced by A(7) < S. The last one
cannot be thrown out since with a notation
mi(t) = Xj(t) — A(t) we get

1 n
An(t) = A(t) + - Zm(t), data=signal+ “noise”
j=1

and the variance of the noise is 2A(t). (Simultaneous
estimation of the function and its variance).

e Adaptive estimation-construct an estimator that does not
depend on m, S, R.
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Further work

e What can be done or what had to be done?
e The condition A(7) = S in the definition of the set

.F,(,,per)(R, S) have to be replaced by A(7) < S. The last one
cannot be thrown out since with a notation
mi(t) = Xj(t) — A(t) we get

1 n
An(t) = A(t) + - Zm(t), data=signal+ “noise”
j=1

and the variance of the noise is 2A(t). (Simultaneous
estimation of the function and its variance).

e Adaptive estimation-construct an estimator that does not
depend on m, S, R.

e Consider other models or formulate a general result for
non-parametric LAN.
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